376 research outputs found

    Transferrin-polycation conjugates as carriers for DNA uptake into cells.

    Get PDF
    We have developed a high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells. We accomplished this by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids. Human transferrin, as well as the chicken homologue conalbumin, has been covalently linked to the small DNA-binding protein protamine or to polylysines of various sizes through a disulfide linkage. These modified transferrin molecules maintain their ability to bind their cognate receptor and to mediate efficient iron transport into the cell. The transferrin-polycation molecules form electrophoretically stable complexes with double-stranded DNA, single-stranded DNA, and modified RNA molecules independent of nucleic acid size (from short oligonucleotides to DNA of 21 kilobase pairs). When complexes of transferrin-polycation and a bacterial plasmid DNA containing the gene for Photinus pyralis luciferase are supplied to eukaryotic cells, high-level expression of the luciferase gene occurs, demonstrating transferrin receptor-mediated endocytosis and expression of the imported DNA. We refer to this delivery system as "transferrinfection.

    Research of spectral and luminescent properties of humic acids of various genesis

    Get PDF
    The spectral-luminescent properties isolated by means of aqueous-alkaline extraction humic acids of various origin have been studied. A comparative analysis of humic acids obtained from brown coal with "Fluka" humic acids standard sample was carried out. It is shown that the obtained samples of humic acids have their own unique properties and differences due to the complexity of their structure

    Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    Get PDF
    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation

    Nuclear Factor κB–dependent Gene Expression Profiling of Hodgkin's Disease Tumor Cells, Pathogenetic Significance, and Link to Constitutive Signal Transducer and Activator of Transcription 5a Activity

    Get PDF
    Constitutive nuclear nuclear factor (NF)-κB activity is observed in a variety of hematopoietic and solid tumors. Given the distinctive role of constitutive NF-κB for Hodgkin and Reed-Sternberg (HRS) cell viability, we performed molecular profiling in two Hodgkin's disease (HD) cell lines to identify NF-κB target genes. We recognized 45 genes whose expression in both cell lines was regulated by NF-κB. The NF-κB–dependent gene profile comprises chemokines, cytokines, receptors, apoptotic regulators, intracellular signaling molecules, and transcription factors, the majority of which maintain a marker-like expression in HRS cells. Remarkably, we found 17 novel NF-κB target genes. Using chromatin immunoprecipitation we demonstrate that NF-κB is recruited directly to the promoters of several target genes, including signal transducer and activator of transcription (STAT)5a, interleukin-13, and CC chemokine receptor 7. Intriguingly, NF-κB positively regulates STAT5a expression and signaling pathways in HRS cells, and promotes its persistent activation. In fact, STAT5a overexpression was found in most tumor cells of tested patients with classical HD, indicating a critical role for HD. The gene profile underscores a central role of NF-κB in the pathogenesis of HD and potentially of other tumors with constitutive NF-κB activation

    Internal evaluation of a physically-based distributed model using data from a Mediterranean mountain catchment

    Get PDF
    An evaluation of the performance of a physically-based distributed model of a small Mediterennean mountain catchment is presented. This was carried out using hydrological response data, including measurements of runoff, soil moisture, phreactic surface level and actual evapotranspiration. A-priori model parameterisation was based as far as possible on property data measured in the catchment. Limited model calibration was required to identify an appropriate value for terms controlling water loss to a deeper regional aquifer. The model provided good results for an initial calibration period, when judge in terms of catchment discharge. However, model performance for runoff declined substantially when evaluated againts a consecutive, rather drier, period of data. Evaluation against other catchment responses allowed identification of the problems responsible for the observed lack of model robustness in flow simulation. In particular, it was shown that an incorrect parameterisation of the soil water was preventing adequate representation of drainage from soils during hydrogeraph recessions. This excess moisture was then being removed via an overestimation of evapotranspiration. It also appeared that the model underestimated canopy interception. The results presented here suggest that model evaluation against catchment scale variables summarising its water balance can be of great use in identifying problems with model parameterisation, even for distributed models. Evaluation using spatially distributed data yielded less useful information on model performance, owing to the relative sparseness of data points, and problems of mismatch of scale between the measurement and the model grid.This work was carried out as part of project VAHMPIRE (Validating Hydrological Models using Process Studies and Internal Data from Research Basins: tools for assessing the hydrological impacts of environmental change), which was funded by the European Commission Framework IV Environment and Climate Program (Contract No. ENV4- CT95-0134). Simulations were carried out on a UNIX workstation funded jointly by UK Nirex Ltd. and NERC grant GR3/ E0009.Peer Reviewe

    Specific Age-Associated DNA Methylation Changes in Human Dermal Fibroblasts

    Get PDF
    Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner

    Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays

    Get PDF
    Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering
    corecore